= USGS

science for a changing world

SEM Essentials:
Estimation

Jim Grace

U.S. Department of the Interior
U.S. Geological Survey 1

In this module, 1 give a brief overview of the estimation methods used
in SEM.

A citation that can be used for the information included in this module
is

Grace, J.B., Schoolmaster, D.R. Jr., Guntenspergen, G.R., Little, A.M.,
Mitchell, B.R., Miller, K.M., and Schweiger, E.W. 2012. Guidelines for
a graph-theoretic implementation of structural equation modeling.
Ecosphere 3(8): article 73 (44 pages).
http://www.esajournals.org/doi/pdf/10.1890/ES12-00048.1.
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1. We can look at the estimation problem in a general way.

Consider a simple model where x, affects y; through two
routes (via y, and y,.

This model can be represented
by three equations, one for each
endogenous variable.
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There are certain general features of estimation in SE models.
Typically there are equations for each endogenous variable and
parameters, such as intercepts and slopes, which we must estimate for
the prediction equations, based on some method for maximizing
explanation of the variations in the data relative to the predicted
relationship. As part of the estimation process we derive additional
estimates for parameter standard errors (or posterior distribution
characteristics in Bayesian estimation), as well as error variances,
residual covariances and more.




2. A key test to be performed that involves the parameter
estimates is the test of conditional independence.
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The model architecture implies that,
COV(x;, y3) = 1/ Pas + 1ar* Pz

If this is not true, there is some additional process connecting x,
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In addition to estimating model parameters, we also estimate in some
fashion how well the data agree with the model. Ultimately, the model
property being tested is whether the omitted links that are part of the
hypothesis are consistent with the data relations. | go into this in more
detail in the module on path rules, but basically, the question is whether
estimated indirect effects in the model match with observed
covariances. If not, that implies something is wrong with the model,
such as a missing path directly from x; to y; in this case.

Note that there is one other implied conditional independence in the
model besides the one between x; and y;.




3. There are two basic approaches to estimating the parameters
in a model. One is via local “piecewise” estimation, the
other via global estimation.

Global estimation and evaluation
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Local estimation and evaluation

This slide compares global versus local estimation. First, based on
theoretical ideas and objectives, a meta-model is derived that
represents general conceptual expectations for the ecological situation.
From that, either directly or from a causal diagram, a structural
equation model is developed for analysis. SE models can be analyzed
either under a global framework or through piecewise estimation of
local relationships. While analytical procedures differ, both
approaches represent implementations of the SEM paradigm.




4. Local estimation involves estimating parameter values for
each equation separately, then assembling the model as a
collection of prediction equations.
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Local estimation was the original approach in SEM involving path
analysis and is making a resurgence (even advocated by Pearl for the
general implementation of SEM). We are not all the way there yet with
local estimation. There are some models we can’t yet estimate in this
fashion, as described in the module on Model Specifications. Also,
local estimation implementations are not yet automated, though we are

working on that.




5. Second approach to estimating the parameters is through
“global” estimation methods.

» Conceptualize model as collection of vectors (of variables, intercepts,
and errors) and matrices (regression parameters, error correlations).
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Y=a+IX+pY+C

Y = p x | vector of responses O = cov (X) = ¢ x g matrix of

o = p x 1 vector of intercepts covariances among Xs

B = p x p coefficient matrix of s on ys ¥ = cov (§) = ¢ x ¢ matrix of

[" = p x ¢ coefficient matrix of ys on Xs covariances among errors
X =g x 1 vector of exogenous predictors
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£ =px 1 vector of errors for the elements of Y

Modern SEM is strongly associated with the global estimation
paradigm. This was first developed by Kark Joreskog in the early
1970s and implemented in his LISREL software, which relied heavily
on matrix algebra procedures.




6. Global estimation uses matrix methods.

Pre-analysis step: Summarize raw data in variance-covariance matrices.

data variance/covariance matrix*
Row |x ¥y i) V3 X Y1 Y2 LK
1 40| 35| 104 51 x 1
2 25 4.0 0.48 31 ¥ -0.35 1
3 15 26| 095 71 » 0.45| -0.44 1
4 23 4.3 1.19 64 V3 -0.30 0.33 -0.37 1
5 24 4.0 1.30 68 std dev 12.6 0.32 1.65 15.1
. . . . mean 25.6 0.69 4.56 49.2
n 15| 38| 0.69 40 . . .
*showing standardized matrix
plus other summary information
-
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A key feature of the global estimation approach is the summary of data
relations in the form of a variance/covariance matrix. This is the “trick”
that allowed factor-type models and econometric models with
reciprocal causation to be estimated.

Other summary information that can be derived from the data includes
things like kurtosis of variables, which can be used in adjustments
employed in “robust” estimation.




7. The basic problem in global estimation is to estimate
parameters by comparing observed covariances to
model-implied covariances.

compare
Observed Covariances Model-Implied Covariances
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Essentially, by representing the problem in terms of comparing model-
implied covariances with observed covariances, and using maximum
likelihood techniques, it is possible to estimate the parameters for a
wide variety of models, including those with latent variables and causal
loops.

Parameter estimates are obtained by iterative comparisons.




8. There is a “fundamental equation™ for global estimation.

The fundamental hypothesis behind covariance-based SEM is
Y =3(0)
where:

X = population covariance matrix of observed variables,
® = vector of population parameter values for the model, and
(@) = the covariance matrix written as a function of ®

In practice, we are dealing with estimates.

A A
S = 3(0)
we aspire to ® such that S = i
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Our objective in global estimation is to pick values of parameter
estimates such that the model-implied covariance matrix is as close to
S, the sample covariance matrix, as possible. This just says that we try
to make things add up.




9. We can think of global estimation as a matching process.

Hypothesized Model Observed Covariance Matrix
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Implied Covariance Matrix

Here is a cartoon to represent the sequence of steps in global
estimation.

10




10. The core of global estimation is the fitting function.

Fitting functions are designed to minimize model-data discrepancies.

Most common fitting function is based on the log likelihood ratio,
which compares the likelihood for a given model to the likelihood
of'a model with perfect fit.

F, = log‘ﬁ‘ + tr(Si‘fl )— log‘S‘ — (p + q)

Note that when sample matrix and implied matrix are equal, terms 1
and 3 =0 and terms 2 and 4 = 0. Thus,

perfect model fit yields a value of F;; of 0.
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At the core of the computations are those that estimate the degree of
discrepancy, overall, between the observed and model-implied
covariances. This discrepancy estimate F,_is an essential quantity in
other calculations, as we shall see.
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11. Maximum likelihood estimators, such as F,,,, possess
several important properties:

(1) asymptotically unbiased,
(2) scale invariant, and

(3) best estimators.

Assumptions:

(1) Z-hat and S matrices are positive definite (i.e., that they do not have
a singular determinant such as might arise from a negative variance
estimate, an implied correlation greater than 1.0, or from one row of a
matrix being a linear function of another), and

(2) data follow a multinormal distribution.

&2 USGS 12

At this level in SEM, we encounter statistical assumptions that
accompany the estimation procedures used. In addition to the usual
assumptions that go along with maximum likelihood, there is the
requirement that the matrices are “positive definite”. It is not
uncommon in SEM analyses to receive an error message that there are
“non-positive definite” elements in the matrices. This statement of a
computational error implies usually some computable relations among
the variables, such as one variable can be computed from a
combination of the others or two variables very highly correlated
(greater than 0.99).
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12. Parameter “identification™ is a key, fundamental topic.

I. For model parameters to be estimated with unique values, they must
be identified. As in linear algebra, we have a requirement that we
need as many known pieces of information as we do unknown
parameters.

2. Several factors can prevent identification, including:
a. too many paths specified in model
b. certain kinds of model specifications can make
parameters unidentified
c. multicollinearity
d. combination of a complex model and a small sample

3. Good news is that most software checks for identification (in
something called the information matrix) and lets you know when
parameters are not identified (and which ones).
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A related, but more general problem is whether unique stable estimates
for all the parameters can be obtained during estimation. The problem
of identification not only applies to statistical estimation but to the
evaluation of complex theoretical ideas using simple data (as discussed
in

Grace, J.B., Adler, P.B., Harpole, W.S., Borer, E.T., and Seabloom,
E.W. 2014 Causal networks clarify productivity—richness interrelations,
bivariate plots do not. Functional Ecology, DOI: 10.1111/1365-2435
(early online) (http://onlinelibrary.wiley.com/doi/10.1111/1365-
2435.12269/abstract)
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